【变形2】n 个相同元素分成 m 份,随意分。
王老师要将20个一模一样的笔记本分给3个不同的学生, 允许有学生没有拿到, 但必须放完,有多少种不同的方法?
A.190 B.231 C.680 D.1140
【答案】B。
【启仕解析】这道题中说每个盒子可以为空,即至少0个,不能直接用隔板法来做,因此首先需要做的是转化成把 n 个相同元素分成 m 份,每份至少 1 个元素,问有多少种不同分法的问题。故分两步进行,第一步先每个人借3个相同的本子,因为球一样,故给法只有1种;第二步,即此题变为将 23 个相同的书全放入 3 个人,每个人至少一个球,此时就可以用隔板法了,则有C222=231 种,则总的个数为1×231=231种。
启仕教育专家认为,备考有效方法是题型与解法归类、识别模式、熟练运用。要破解隔板模型的排列组合题,关键就是在于理解题目含义,找到题干的变形条件进行适当转化,从而与标准模型对应起来,从而根据公式快速求解!
更多2018年国家公务员考试信息请关注启仕教育(http://www.qs101.com/)